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This review summarizes recent evidence that prenatal exposure to diverse environmental chemicals dys-
regulates the fetal epigenome, with potential consequences for subsequent developmental disorders and
disease manifesting in childhood, over the lifecourse, or even transgenerationally. The primordial germ
cells, embryo, and fetus are highly susceptible to epigenetic dysregulation by environmental chemicals,
which can thereby exert multiple adverse effects. The data reviewed here on environmental contam-
inants have potential implications for risk assessment although more data are needed on individual
susceptibility to epigenetic alterations and their persistence before this information can be used in for-
PA
NA methylation
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mal risk assessments. The findings discussed indicate that identification of environmental chemicals that
dysregulate the prenatal epigenome should be a priority in health research and disease prevention.
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. Introduction generationally. We then offer examples of developmental exposure
to various environmental pollutants shown to induce epigenetic
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Following a brief summary of the role of epigenetics in early
evelopment and disease, this review focuses on the evidence
hat the prenatal/fetal period is highly susceptible to epigenomic
ysregulation with implications for health, both lifelong and trans-
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changes and neurodevelopmental deficits and diseases. Interac-
tions between toxic and environmental exposures and genetic,
nutritional and social factors that can exacerbate effects are then
described. Finally, two case studies are provided to illustrate
mental exposures, epigenetics, and disease. Reprod Toxicol (2011),

the strengths and limitations of available epigenetic data and
the potential of using epigenetic markers to forge causal links
between toxic environmental exposures and neurodevelopmental
outcomes. In this section, we summarize evidence that epige-
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Fig. 1. There are multiple periods during which environmental exposures could affect the F1 individual’s methylation status, potentially affecting the F1 phenotype. The
first window is during F0 (parental) germ cell development when methylation is reprogrammed following imprint erasure in the father’s sperm (solid blue line) and the
mother’s egg (solid red line) The second window is post-conception, during F1 embryonic development, when all but imprinted genes are demethylated, with the male
germ line (dashed blue line) demethylating more quickly, followed by the female germ line (dashed red line). Imprinted genes (purple line) maintain their methylation
marks throughout this reprogramming, allowing for the inheritance of parental-specific monoallelic expression in somatic tissues throughout adulthood [203]. All of the
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on-imprinted genes are subsequently remethylated once the embryo reaches the e
erm cells undergo epigenetic reprogramming, where parental imprinting is erased
hether epigenetic alterations are transmitted transgenerationally, the F3 generati

n this figure legend, the reader is referred to the web version of the article.)

etic alterations in endocrine and immune pathways are directly
nvolved in the adverse neurodevelopmental effects associated

ith in utero exposure to the two classic endocrine disruptors,
olycyclic aromatic hydrocarbons (PAHs) and bisphenol A (BPA).

. The role of epigenetics in early development and disease:
he prenatal/fetal window of susceptibility

Epigenetics is the study of heritable changes in gene expression
r phenotype occurring without changes in DNA sequence [1]. For
eneral reviews, see [2–4]. The genetic information in DNA has been
ikened to the notes of an orchestral score and epigenetics to the
onductor who interprets the score and controls the dynamics of
he symphonic performance [5]. While new epigenetic mechanisms
re being uncovered, the best characterized are DNA methyla-
ion, changes in histone proteins around which DNA is packaged,
nd expression of non-coding RNAs (see [6–9] for review). Inter-
ctions between these epigenetic mechanisms generate diversity
f cell types during development and then maintain the expres-
ion profiles of the different cell types throughout life [6]. The
erm “environmental epigenomics” reflects the constant interplay
etween the environment, which includes both endogenous (such
s hormone levels or immune status) and exogenous factors (such
s nutritional and chemical exposures), and the epigenome. The
est characterized epigenetic events in early mammalian develop-
ent are genomic imprinting (the silencing of one parental allele at
single locus, which occurs in the parental germ stem cells) result-

ng in monoallelic gene expression and x-chromosome inactivation
silencing of one of the two X chromosomes in mammalian females)
ccurring in early embryogenesis (reviewed in [6]). Dysregulation
f imprinted genes during early development is involved in disor-
ers such as Angelman’s, Prader-Willi and Beckwith-Wiederman
Please cite this article in press as: Perera F, Herbstman J. Prenatal environ
doi:10.1016/j.reprotox.2010.12.055

yndromes, certain cancers, and possibly in autism and other neu-
ological syndromes [10].

Gene expression can be regulated by epigenetic processes.
wo examples include coordinated epigenetic modifications of
hromatin by DNA methylation and post-translational covalent
lastocyst stage. During the gonadal sex determination of the F1 embryo, primordial
e germ cells of the F1 individual mature (solid light blue or pink line). To determine
st be studied (see text and Fig. 2) [7]. (For interpretation of the references to color

modifications of histone proteins [4,11,12] and micro-RNA-induced
suppression of gene expression during development [13]. DNA
methylation is the most extensively investigated of the epige-
netic mechanisms and involves the addition of a methyl group
at the carbon-5 position of cytosine in CpG dinucleotides. While
CpG dinucleotides are underrepresented in mammalian genomes
overall, and usually exist in a methylated state, proximal gene
promoter regions often overlap with CpG rich regions known as
“CpG islands” are typically unmethylated. In these regions, cytosine
methylation serves a regulatory function [14]. By extending into the
major groove of DNA, the methyl group of 5-methylcytosine (5-mC)
interferes with transcription binding proteins, inhibiting transcrip-
tion, and effectively silencing the gene [7]. More importantly, DNA
methylation acts as a docking site for methyl-DNA binding proteins
that recruit other chromatin remodeling proteins. The importance
of methylation changes at non CpG islands is now being recog-
nized [15]. Both hypermethylation and hypomethylation of DNA
can result from exposure to exogenous chemicals. For some genes,
even a small change in the level of DNA methylation at a few CpG
sites might subtly alter gene expression and increase disease risk
[16,17].

The epigenome is susceptible to dysregulation throughout life;
however, it is thought to be most vulnerable to environmen-
tal factors during embryogenesis, which is a period of rapid cell
division and epigenetic remodeling [16,18]. Following a complex
choreography, following fertilization, DNA methylation patterns
are largely erased and established early in mammalian develop-
ment (reviewed in [7,19]). Fig. 1 illustrates the normal timetable
for reprogramming of methylation of non-imprinted and imprinted
genes during early development, beginning with the primordial
germ cells (PGCs) of each of the parents (F0) through gameto-
genesis, fertilization, the embryonic period of the offspring (F1),
mental exposures, epigenetics, and disease. Reprod Toxicol (2011),

followed by the maintenance of methylation in somatic cells and
the development of germ cells that will become F2 [7,20,21].
These dynamic stages represent windows of potential vulnera-
bility to epigenetic dysregulation [7]. While the maintenance of
imprinted genes throughout the preimplantation period is essen-

dx.doi.org/10.1016/j.reprotox.2010.12.055
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ial for normal embryonic development, demethylation of other
enes is needed to make the genome broadly available to the
eveloping embryo. Thus, after fertilization and prior to implanta-
ion, the embryo undergoes genome-wide demethylation, with the
xception of imprinted genes (which retain the methylation pro-
le of the parent-of-origin) and some retrotransposable elements
16]. Beginning when the embryo is in the blastocyst stage (start-
ng day 5 post fertilization for humans) and before implantation
nto the uterine wall (about 7 days post fertilization), methylation
atterns in non-imprinted genes are reestablished de novo by the
NA methyltransferases DNMT3a and DNMT3b and their cofac-

or DNMT3L [20,22]. DNA methylation patterns are maintained by
NMT1, which restores full methylation to hemi-methylated CpG

ites following DNA replication; this maintenance is critical for nor-
al development [20,23].
As noted, imprinted genes do not undergo genome-wide

emethylation before implantation but maintain their methylation
atterns throughout this period of reprogramming, allowing for the

nheritance of parental-specific monoallelic expression in somatic
issues throughout adulthood [20]. Primordial germ cells (PGC)
the precursor cells that develop into spermatogonia and oogo-
ia) have differential methylation by parent-of-origin at imprinted
enes until they enter the genital ridge, when their DNA under-
oes global demethylation of both imprinted and non-imprinted
enes [24,21]. Remethylation of imprinted genes occurs in a sex-
pecific manner during gametogenesis (the division of gametocytes
nto haploid sperm and oocytes by meiosis) [19,20]. Imprints are
stablished perinatally in the male germ line and are maintained
hroughout the mitotic divisions of the spermatogonial stem cells
20,21,48]. In the female germline, imprints are established during
ocyte growth while they are arrested during the meiotic prophase
and are erased soon thereafter in the primordial germ cells of the
ext generation [25,26]. It can be seen from this brief summary that,
rior to complete cell differentiation and the persistence of a stable
pigenetic pattern, there is an opportunity for prenatal endogenous
nd exogenous exposures to alter the elaborate DNA methylation
atterning required for normal tissue development [18]. Imprinted
enes may be a particularly susceptible target for environmentally
nduced epigenetic effects [27]. The early developmental period is
hought to be the most susceptible to epigenetic insults because
he DNA synthesis rate is high and the elaborate DNA methyla-
ion patterning and chromatin structure required for normal tissue
evelopment is established at that time [28]. However, after birth,
omatic cell methylation patterns continue to adjust in response to
evelopmental and environmental factors [2,3,29].

In 1992, Barker and colleagues laid the groundwork for the
fetal basis of adult disease” (FEBAD) hypothesis, postulating that,
ecause organs undergo developmental programming in utero that
redetermines subsequent physiologic and metabolic adaptation
uring adult life, prenatal insults such as nutritional deprivation
r environmental exposures that disturbed developmental pro-
ramming could lead to a higher risk of disease in adulthood.
hey showed that abdominal fatness in adult men, an indicator of
ncreased risk of cardiovascular disease and diabetes independent
f body mass, was associated with retarded fetal growth, suggesting
persisting response to adverse conditions in fetal life [30]. Since
992, the evidence has grown that developmental plasticity allows
he fetus to make anticipatory responses to the external environ-

ent by altering the course of cellular and organ differentiation in
tero in order to gain adaptive advantage for later life challenges
31,32]. However, a mismatch between the prenatal and the post-
Please cite this article in press as: Perera F, Herbstman J. Prenatal environ
doi:10.1016/j.reprotox.2010.12.055

atal environment or synthetic environmental agents that mimic
nternal or natural cues can result in disease. The FEBAD hypothe-
is has been supported by evidence that fetal nutrient availability,
ther intrauterine factors, and external environmental factors can
ause serious consequences in later life by permanently reprogram-
 PRESS
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ming the functional capacity of organs. Classical examples include
the association of low or lower birth weight with increased risk
of adult onset cardiovascular disease [31], type 2 diabetes melli-
tus, osteoporosis [33], depressive disorders [34] and certain cancers
[35].

There is compelling evidence that epigenetic dysregulation
underlies the observed associations between adult disease and
adverse environmental/nutritional conditions early in develop-
ment. For example, Heijmans and colleagues reported that
individuals who were periconceptionally exposed to famine dur-
ing the Dutch Hunger Winter in 1944–1945 had, six decades later,
significantly less DNA methylation of the imprinted insulin-like
growth factor II (IGF2) gene compared to their unexposed same-sex
siblings [36]. IGF2 is a key factor in human growth and development
and is maternally imprinted. Diseases that have been associated
with early gestational exposure to famine include schizophrenia
and coronary heart disease – diseases in which IGF2 may play a
role.

In addition, a series of elegant studies in mice has shown that
prenatal exposure to dietary methyl-donor supplementation with
folic acid, Vitamin B12, choline, and betaine not only increased DNA
methylation at specific CpG sites but also altered subsequent phe-
notypes such as coat color and obesity in the Avy mouse model
(reviewed in [7]). The fact that CpG sites were altered in tissues
derived from the ectodermal, endodermal, and mesodermal lin-
eages indicates that methylation profiles were changed early in
embryonic development [7,18,37].

Another often-cited illustration of the importance of methy-
lation changes attributable to environmental factors, albeit one
involving neonatal exposure, is the work of Weaver et al. [38,39]
showing that maternal stress and subsequent nurturing behaviors
alter the epigenotype in rodent offspring, affecting their glucocorti-
coid receptor (GR) expression and behavior. The epigenetic changes
could be reversed in adulthood by administering methionine or his-
tone deacetylatase (HDAC) inhibitor. These epigenetic effects are
not germline inherited but are passed on to the offspring directly
from the mother through her behavior during the first week of post-
natal life [40,29]. In a related study, newborns of mothers who had
symptoms of depression during pregnancy had increased methy-
lation of the glucocorticoid receptor gene in umbilical cord blood
cells and the infants had elevated salivary cortisol concentrations
at three month of age [41].

Bagot and Meaney conclude that epigenetic remodeling can
occur both during early and later stages of development in response
to environmental events that regulate development and func-
tion, with increased risk for psychopathology [42]. Most studies
have focused on the influence of the maternal environment and
maternal-infant interactions. However, recent evidence suggests
that paternal factors (nutritional, toxicological, age, and phenotypic
variation) can affect offspring and in some cases grandoffspring
[43].

With respect to the lifecourse, a well studied example of an
exogenous in utero exposure affecting adult disease is diethyl-
stilbesterol (DES), the estrogenic pharmaceutical agent. This
non-genotoxic, epigenetic carcinogen induced reproductive disor-
ders and cancers in daughters exposed in utero and even in their
granddaughters (reviewed in [44]). DES has been shown to alter
gene methylation in mice exposed in utero suggesting that epige-
netic mechanisms are involved [45].

An indirect mechanism by which environmental toxicants
may increase propensity to adult disease is through the induc-
mental exposures, epigenetics, and disease. Reprod Toxicol (2011),

tion of changes in gene expression in response to IUGR (see
review by Joss-Moore and Lane [4,12]. Among the epigenetic
environmental exposures that have been associated with IUGR
are air pollution [46–50], organochlorine pesticides [51], and
possibly trihalomethanes or other water disinfection byproducts

dx.doi.org/10.1016/j.reprotox.2010.12.055
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51,52]. IUGR affects organ systems by interrupting developmen-
al processes such as apoptosis or altering levels of homeostatic
egulation factors [4,12]. Epigenetic dysregulation is at least par-
ially responsible for these effects, as IUGR can induce changes
n gene expression accompanied by changes in levels and activi-
ies of chromatin modifying enzymes such as DNMT1 and HDAC1,
lobal DNA hypomethylation, and increased histone H3 acety-
ation [53,54]. IUGR-related adult morbidities include metabolic
isorders (dyslipidemia, fatty liver, obesity) and non-metabolic
isorders (chronic lung disease, neurodevelopmental disorders)
4,12]. Recent studies suggest that mechanisms altering epigenet-
cs help drive disease processes. For example, transdifferentiation
rocesses have been implicated in diabetes [55,56].

. Prenatal exposure to environmental pollutants, related
ealth effects, and epigenetic dysregulation

As reviewed by Baccarelli and Bollati [57], studies in adults
ave demonstrated epigenetic changes related to environmental
xposure to metals, air pollution, benzene and persistent organic
ollutants. For example, in a study of adult coke oven workers and
ontrols, global and IL-6 hypermethylation and p53 hypomethyla-
ion were associated with PAH exposure [58]. In workers exposed
o the leukemogen, benzene, epigenomic data showed effects of
enzene on DNA methylation of a number of specific genes [59].

With respect to prenatal exposures, there is an increasing body
f evidence that diverse pollutants alter epigenetic programming
nd disease risk in the F1 and even F2 and F3 generations. These
nclude arsenic, tobacco smoke, air pollutants, and endocrine dis-
upting chemicals.

.1. Arsenic

The long-term in utero consequences of early childhood arsenic
xposure in human populations include increased mortality from
ung cancer and bronchiectasis in young adulthood [60]. In rodent

odels, in utero arsenic exposure resulted in a sharp increase in
epatocellular carcinomas in exposed offspring and also changed
he expression of genes involved in cell proliferation, stress and
ell-to-cell communication. These gene expression changes were
vident when the offspring reached adulthood [61].

Extending this experimental work, Fry and colleagues [61] have
eported that, among 32 newborns born to arsenic-exposed and
rsenic unexposed mothers in Thailand, gene expression changes
n cord blood were highly predictive of in utero arsenic exposure.
rsenic exposure was associated with robust activation of an inte-
rated network of pathways involving the gene NF-�B (nuclear
actor kappa-light-chain-enhancer of activated B cells), inflam-

ation, cell proliferation, stress, and apoptosis. This finding is
iologically plausible because NF-�B regulates a large number of
enes critical for apoptosis as well as inflammation-driven tumor
rogression.

Few studies have directly linked epigenetic or gene expression
hanges induced by arsenic to adverse health outcomes in a human
opulation and none has examined the link between prenatal
rsenic exposure, methylation, and disease. However, a population-
ased study of human bladder cancer found that arsenic exposure,
easured as toenail arsenic, was associated with promoter methy-

ation of the candidate tumor suppressor gene RASSF1A in human
ladder tumors. These results suggest that bladder carcinogens
Please cite this article in press as: Perera F, Herbstman J. Prenatal environ
doi:10.1016/j.reprotox.2010.12.055

nduce epigenetic alterations important in bladder cancer causa-
ion [62]. Another study of adults in Bangladesh found that arsenic
xposure was associated with increased genomic methylation of
eukocyte DNA and that genomic hypomethylation of leukocyte
NA was associated with increased risk for arsenic-induced skin
 PRESS
Toxicology xxx (2011) xxx–xxx

lesions [63]. In a nested case-control study of 274 cases who devel-
oped lesions two years after recruitment and 274 controls matched
to cases for sex, age, and water arsenic, the odds ratio for devel-
opment of skin lesions among participants with hypomethylated
leukocyte DNA at recruitment was 1.8 (95% confidence intervals
(CIs)).

3.2. Tobacco smoke

Prenatal exposure to active or passive maternal tobacco smok-
ing has been associated in some studies with lower pulmonary
function, increased risk of asthma [64], cancer [65,66], obesity
[67,68], type II diabetes [69], and low birth weight which is asso-
ciated with coronary heart disease, obesity and type II diabetes
[70].

Alterations in DNA methylation patterns in genomic DNA from
buccal cells of children were associated with in utero expo-
sure to maternal smoking such that prenatally exposed children
had significantly lower levels of global methylation as well as
increased methylation of several genes compared to children with-
out exposure [71]. Adjustment for postnatal ETS exposure did
not appreciably change the results. The finding of an association
between prenatal tobacco smoke exposure and global hypomethy-
lation was observed for ALuY68 but not LINE 1, possibly reflecting
their different control mechanisms and transcription patterns in
response to cellular stressors [72]. In contrast, Terry et al. [73]
reported that prenatal exposure to maternal tobacco smoking was
associated with higher levels of global methylation in mononuclear
blood cells from adult women. The inconsistencies may reflect the
different assays, tissues, and age of subjects. If confirmed, the find-
ing of global hypomethylation in children exposed prenatally to
tobacco smoke is of concern since the trend of global hypomethy-
lation with region or gene-specific hypermethylation has been
observed previously in cancers [57,74]. Global hypomethylation
is thought to result in chromosomal instability and increased
mutational events, while promoter hypermethylation can silence
expression of tumor suppressor genes [75].

In addition to the observed effects of F0 exposure during embry-
onic development of the F1 generation, environmental exposures
during gestation have been shown to influence disease risk in the
F2 generation. For example, grandmaternal smoking during the
mother’s fetal period was associated with a greater risk of asthma in
the grandchildren (F2 generation), independent of maternal smok-
ing [76]. Risk was further increased if both the grandmother and the
mother smoked during pregnancy. Epigenetic mechanisms have
been proposed for this phenomenon [76]. Another example of F0
exposure affecting the F2 generation is provided by experimental
studies of DES and uterine cancer [77–79].

3.3. Air pollution/PAHs

Benzo[a]pyrene (BaP) and other PAHs exert both genotoxicity
(inducing DNA damage, DNA adducts, and mutations) and epige-
netic toxicity. Certain PAHs resemble steroid hormones and are
considered endocrine disruptors. They are lipid soluble, accumu-
late in adipose tissue, and are transferred across the placenta and
the fetal blood brain barrier (reviewed in [80,81]). In the Columbia
Center for Children’s Environmental Health (CCCEH) New York City
(NYC) cohort, prenatal exposure to PAHs produced by burning of
fossil fuel and other organic material has been associated with mul-
tiple adverse effects including fetal growth reduction [82] and IUGR
mental exposures, epigenetics, and disease. Reprod Toxicol (2011),

[46] in African Americans, as well as developmental delay [83],
reduced IQ [84], and behavioral disorders (in preparation) in both
African Americans and Dominicans. In a parallel cohort study of Pol-
ish Caucasians, adverse effects were also observed on fetal growth
[85], cognitive development [86], and behavioral disorders.

dx.doi.org/10.1016/j.reprotox.2010.12.055
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In a subset of the NYC cohort, prenatal PAH exposure was signifi-
antly associated with genomic hypomethylation in umbilical cord
hite blood cell (UCWBC) DNA. Newborns in the highest prenatal

AH exposure group had an average decrease of 0.42 ng/100 mg
otal DNA compared to newborns in the lowest prenatal PAH
xposure group (p < 0.01) [87]. In the same 159 cohort children,
he persistence of global methylation pattern was evaluated by
omparing methylation measured in cord blood to methylation
easured in blood collected at age 3. Global DNA methylation lev-

ls in cord and 3-year blood were significantly correlated (r = 0.82,
< 0.01), suggesting that changes in cord blood epigenetic markers
ue to prenatal PAH exposure may be stable alterations that persist

n blood through early childhood [87].
In order to explore the association between prenatal PAH

xposure, epigenetic changes and childhood asthma, methylation
ensitive restriction fingerprinting was used to analyze umbilical
ord white blood cell (UCWBC) DNA of 20 CCCEH cohort children
88]. Over 30 DNA sequences were identified whose methylation
tatus was dependent on the level of maternal PAH exposure. Six of
he 30 DNA sequences initially identified were found to be homolo-
ous to known genes having one or more 5′-CpG island(s) (5′-CGI).
f these, acyl-CoA synthetase long-chain family member 3 (ACSL3),
hich belongs to the acyl-CoA synthetase long chain (ACSL) fam-

ly of genes which encodes key enzymes in fatty acid metabolism,
xhibited the highest concordance between the extent of methy-
ation of its 5′-CGI in UCWBCs. The level of gene expression in

atched fetal placental tissues in the initial 20 cohort children.
n a larger sample of 56 cohort children, hypermethylation of the
CSL3 5′-CGI was found to be significantly associated with maternal
irborne PAH exposure exceeding 2.41 ng/m3 (OR = 13.8; p < 0.001)
nd with a parental report of asthma symptoms in children prior
o age 5 (OR = 3.9; p < 0.05). Hypermethylation of this gene in T
elper cells or lung tissues is expected to diminish fatty acid utiliza-
ion and beta-oxidation-energy production, and possibly influence

embrane phospholipid composition. Thus, if validated, methy-
ated ACSL3 5′CGI in UCWBC DNA may be a surrogate endpoint for
ransplacental PAH exposure and/or a potential biomarker for envi-
onmentally related asthma and may provide mechanistic support
or the FEBAD hypothesis.

.4. Phthalates

The phthalates are ubiquitous industrial plasticizers and include
gents such as di(2-ethylhexyl) phthalate (DEHP), dibutyl phtha-
ate (DBP), and butyl benzyl phthalate (BBP), which are classified
s endocrine disruptors because of their anti-androgenic or pro-
strogenic effects [89,90]. They are used to soften polyvinyl chloride
nd are found in adhesives and glues, agricultural adjuvants, build-
ng materials, personal care products, medical devices, detergents,
ackaging, children’s toys, pharmaceuticals, food products, and
extiles [91]. Exposure to phthalates can occur through diet, inhala-
ion, or dermal exposure.

While not all studies have been consistent, prenatal exposure
o phthalates has been associated with shortened gestational age
92,93] and with a number of adverse reproductive and devel-
pmental effects including decreased anogenital distance among
ewborn boys [90], undescended testis (exposure to a combina-
ion of phthalates and anti-androgenic pesticides) [94], and adverse
eonatal neurodevelopment among girls [95]. Phthalate exposure
as also been associated with elevated body mass index (BMI) dur-

ng the first three years of life [96].
Please cite this article in press as: Perera F, Herbstman J. Prenatal environ
doi:10.1016/j.reprotox.2010.12.055

Phthalates are epigenetically toxic. In MCF7 breast cancer cells,
reatment with BBP led to the demethylation of estrogen recep-
or (ER) alpha promoter-associated CpG islands, suggesting that
ltered ER mRNA expression by BBP might be related to aber-
ant DNA methylation in the promoter region of the receptor [89].
 PRESS
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Exposure to DEHP during sexual differentiation of rats caused
male reproductive tract malformations and abnormal expression of
insulin-like growth factor-(IGF-1), c-kit ligand (KITL), and leukemia
inhibitory factor (LIF), genes that may contribute to the reproduc-
tive toxicity of phthalates [97].

3.5. Bisphenol A (BPA)

BPA is also considered an endocrine disruptor and can accumu-
late in adipose tissue [98]. BPA is used in the production of plastics
and resins which are used in food and drink containers, flame retar-
dants, dental sealants, and in the recycling of thermal paper. Almost
all exposure, including that to children, has been thought to occur
through diet [99,100]. Recent studies, however, have suggested
that non-dietary sources may be important as well [101,102]. In
experimental models BPA has been associated with adverse repro-
ductive effects in females [103] and with an increased susceptibility
to cancer [104].

Developmental (neonatal) exposure of rats to BPA resulted
in increased incidence of prostate intraepithelial neoplasia (PIN)
when followed by prolonged estradiol and testosterone expo-
sure in adulthood [35]. The prostate tissues showed consistent
methylation changes as a result of neonatal estrogen or BPA expo-
sures. The phosphodiesterase Type 4 variant 4 (PDE4D4) gene
showed hypomethylation of the 5′CpG island, resulting in increased
PDE4D4 expression in the adult prostate [105]. These findings
jointly suggest that the prostate epigenome is permanently altered
by early exposure to BPA and that the epigenetic alteration may
lead to heightened risk of prostate cancer with aging.

4. Case studies: a proposed epigenetic mechanism for the
neurodevelopmental effects of in utero exposure to PAHs
and BPA

The prior section has reviewed the evidence that diverse pre-
natal environmental exposures increase risk of various diseases
in the offspring and in some cases their grandchildren, that they
also alter the epigenome, and that epigenetic dysregulation may
mediate their adverse health effects. In contrast, in the following
section we present two case studies in which we propose that epi-
genetic alterations in endocrine and immune pathways are directly
involved in the neurodevelopmental effects associated with in utero
exposure to PAHs and BPA. This section illustrates both the limita-
tions of available data and the potential of using epigenetic markers
to forge links in the causal chain for a particular exposure and a
specific health outcome.

PAHs have been shown to be neurotoxic and affect gene expres-
sion in humans. Laboratory studies exposing experimental animals
to PAHs during the prenatal and neonatal periods have reported
neurodevelopmental and behavioral effects including depression-
like symptoms and memory impairment in the absence of other
overt toxicological effects [106–111]; others have shown that expo-
sure affects neurotransmitter levels and gene expression patterns
in the brain [80,112–114]. For example, prenatal treatment of rats
with BaP impaired memory and ability to learn, consistent with
alterations in the expression profile of glutamate receptor (GluR)
subunits, which are key genes involved in long-term potentiation
(LTP), considered the cellular correlate of learning and memory
[81,111].

Many studies have shown that PAHs such as BaP are endocrine
mental exposures, epigenetics, and disease. Reprod Toxicol (2011),

disruptors, affecting gene expression in hormonal regulatory path-
ways important in early brain development. Gene targets include
the aryl hydrocarbon receptor (AhR) [115–117], CYP1A1 and CYP1B1
and CYP19A1; these genes are expressed in the fetal brain and
peripheral lymphocytes [118–123]. In experimental studies, BaP

dx.doi.org/10.1016/j.reprotox.2010.12.055
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aused alterations in levels of noradrenaline, dopamine, and sero-
onin and/or their metabolites in discrete brain regions [112–114].
n gestationally exposed rats, BaP caused significant reductions
n expression of the N-methyl-d-aspartic acid (NMDA) glutamate
eceptor subunit NMDAR2B [81,111,124], and reduced LTP across
he perforant path granular cells synapses in the hippocampus
125]. These data indicate that BaP and other PAHs disrupt the glu-
amate pathway and the dopaminergic and serontonergic systems,
onsistent with observed disturbances of learning and emotional
ehavior [113,125].

In addition, PAHs are immunotoxic contaminants known
o affect expression of pro-inflammatory cytokines including
nterleukin-1beta, tumor necrosis factor-alpha (TNF�) IFN-� and
he chemokine CCL1 and [126,127]. Cytokines are also produced
y CNS tissue and peripheral leukocytes [128]. These cytokines
re among those most often implicated in neurodevelopment
129–131].

Finally, exposure to BaP upregulated COX-2, a key enzyme
nvolved in inflammation and associated with reactive oxygen
pecies (ROS) production, in rat astrocytes [132,133] in human cells
nd rats exposed to BaP or its main metabolite BPDE [133–136].
esidents of cities with severe air pollution had significantly higher
xpression of COX-2 in the frontal cortex and hippocampus com-
ared to controls at autopsy [137].

Fewer studies have evaluated methylation changes due to PAHs
han have looked at gene regulation or expression. However, in
he CCCEH cohort study described above, a number of genes in
ddition to ACSL3 were found to be differentially methylated in
CWBC of newborns with high vs. low prenatal PAH exposure [88].
everal are known to be expressed in leukocytes and brain cells
nd have functions related to inflammatory and or immune path-
ays. They include CCL17 (a chemokine also known as TARC) that

electively induces migration of Th2 lymphocytes [138], which is
xpressed constitutively in thymus and in phytohemagglutinin-
timulated peripheral blood mononuclear cells, and has been found
o be overexpressed in autistic brains [139].

The experimental studies described above have drawn an
nferential link between PAH-related epigenetic alterations and
eurodevelopmental effects, suggesting that alterations in methy-

ation/gene expression mediate the neurodevelopmental effects of
AHs. For example, the observed neurodevelopmental effects of
AHs on learning and memory in humans [83] and the observa-
ion that prenatal treatment of rats with BaP impaired their ability
o learn [111] are consistent with the observed disruptions of the
lutamate pathway [111].

BPA is another endocrine disrupting chemical capable of exert-
ng developmental effects. A recent epidemiological study has
inked prenatal exposure to BPA with subtle, gender-specific alter-
tions in behavior of 2-year olds [140]. Experimental evidence
ndicates that gestational exposure to environmentally relevant
oses of BPA abrogates sexual dimorphism in brain structure and
ehavior and disrupts cognition, social behaviors, and other aspects
f brain function [141–143]. Perinatal exposure to BPA altered sex
ifferences in anxiety and depression-like responses in rodents
144–148]. In addition, male mouse offspring of dams treated from

ating through weaning with low dose BPA exhibited impairment
n memory [149]. Hyperactivity in male mice has also been demon-
trated in response to perinatal exposure to BPA (females were
ot examined) [150]. Importantly, these behavioral changes are

nduced through low dose exposures to BPA in these experimental
odels. BPA treatment of pregnant female mice led to disruption
Please cite this article in press as: Perera F, Herbstman J. Prenatal environ
doi:10.1016/j.reprotox.2010.12.055

n neocortical patterning in offspring during adulthood, possibly
y accelerating neuronal differentiation and migration [151], and
aused changes in gene expression in the fetal forebrain [152].

As is the case for PAHs, most mechanistic research on BPA,
n estrogen-mimicking chemical, has focused on gene expression,
 PRESS
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rather than DNA methylation. BPA has been shown to interact
with estrogen signaling pathways through binding to the estrogen
receptors ER� and ER� [153–155], and is also believed to interfere
with non-classical estrogen signaling pathways at very low con-
centrations [156–158]. Studies in mice have shown that perinatal
exposure to BPA can disrupt estrogen signaling in the offspring,
with changes in gene expression at low doses [159]. Gestational
exposure to BPA caused permanent upregulation of ER� mRNA in
the preoptic area of the hypothalamus in male rat offspring [160]
and increased ER� and ER� levels in the dorsal raphe nucleus of
male mouse offspring of mice [161].

Prenatal BPA exposure has also been shown to interfere with
other endocrine pathways. Prenatal BPA exposure dramatically
increased expression levels of AhR in mouse embryonic cere-
bra, cerebella, and gonads, showing a U-shaped dose–response
curve with extremely high response at the lowest dose tested
[162]. Prenatal exposure to BPA also interfered with thyroid hor-
mone, required for normal fetal and neonatal brain development
[163–165], and increased expression of RC3/neurogranin in the
dentate gyrus brain region, suggesting that BPA differentially
affects the beta-thyroid receptor (TRˇ) vs. the alpha-TR (TR˛) [166]
and changes the temporal expression patterns of TR˛ and TRˇ
[152]. Cell-based assays suggest that BPA blocks expression of TRˇ
[167,168].

Prenatal exposure to BPA affects immune cells and the expres-
sion of genes involved in inflammation such as IL-4 and INF�
[169,170]. BPA also affects methylation of genes involved in several
immune pathways. For example, gestational exposure of rats to BPA
caused differential methylation of Cebp˛ [171], which is involved
in macrophage differentiation, cytokine signaling, microglial acti-
vation, and neuronal signaling [172–175]. As noted above, studies
by Ho et al. found that PDE4D (involved in macrophage differ-
entiation, neutrophil recruitment in inflammation, responses to
oxidative stress, and possibly in regulation of dopaminergic neuro-
transmission [176–179]) was hypomethylated in the prostates of
rats treated neonatally with BPA and also showed increased expres-
sion [35]. All of the genes mentioned above are known or believed
to be expressed in both the brain and the blood cells.

A number of studies have attempted to link BPA-related changes
in gene expression to neurodevelopmental outcomes. In utero
treatment of mice with BPA eliminated sex differences in the
size of the anteroventral periventricular preoptic (AVPV) area,
significantly reduced the number of TH (tyrosine hydroxylase)
positive neurons in the female AVPV, and abrogated sex differ-
ences in the number of TH-positive neurons [143]. In the same
study, BPA reduced sexual dimorphism in anxiety-related behav-
iors in the open-field test. Finally, BPA treatment from mating
through weaning both increased levels of neurotransmitter-
producing choline acetyltransferase in the hippocampus of male
offspring and affected performance on the step-through test, indi-
cating memory impairment as a consequence of BPA exposure
[149].

As we have seen, genes in inflammatory/immune and endocrine
pathways are targets for PAHs and BPA in the context of neurode-
velopmental effects. As discussed by Tian [180], genes involved
in inflammation and immune response may be common tar-
gets for diverse epigenetic environmental agents; and multiple
disease endpoints may be affected. Examples include AhR, a
pleiotropic ligand-activated transcription factor whose ligands
include many natural and synthetic compounds (such as dioxin and
PAHs) and NF-�B, a pleiotropic factor that regulates many phys-
mental exposures, epigenetics, and disease. Reprod Toxicol (2011),

iological and pathophysiological processes. Interactions between
AhR and NF-�B pathways are potentially important mechanisms
for chemical-induced immune dysfunctions, carcinogenesis, alter-
ation of xenobiotic/pollutant metabolism and other pathological
responses induced by environmental insults.

dx.doi.org/10.1016/j.reprotox.2010.12.055
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toxicants tend to cluster in the most socially disadvantaged pop-
ig. 2. Three generations at once are exposed to the some environmental conditions
diet, toxics, hormones, etc.). In order to provide a convincing case for epigenetic
nheritance, an epigenetic change must be observed in the 4th generation.

. Transgenerational effects of prenatal exposures

As we have seen, the role of prenatally acquired somatic epige-
etic alterations in disease has been quite widely studied, mostly in
xperimental models. Less well characterized are epigenetic events
hat are inherited through the germline from parent to child and
ransmitted to subsequent generations [181].

There is growing evidence that environmental variations expe-
ienced by both fathers and mothers may lead to phenotypic
ariation in the development and behavior of offspring result-
ng from transmission through the germline [182]. Transmission
an result either from altered programming within germ cells of
he epigenome of the retrotransposons and imprinted genes or
hrough altered expression of RNA within gametes. “Transgen-
rational epigenetic inheritance” refers to the transmission of a
iological trait to subsequent generations via epigenetic modifi-
ations in the germline [7]. As elaborated by Jirtle and Skinner [7],
n order to consider transgenerational effects on the epigenome
o be a plausible mechanism for a disease phenotype, the epige-
etic changes and the disease phenotype must be observed in the
3 generation. This is because gestational exposure of an F0 female
irectly exposes both the F1 embryo and the F2 germline. There-
ore, phenotypes in the F1 and F2 generations may be due to their
irect exposure to the environmental factor rather then germline
ransmission (see Fig. 2).

While multi-generational effects involving direct exposure have
een observed for a number of agents [183], there are fewer exam-
les of transgenerational phenotypes occurring in the absence of
irect exposure. The best developed example of transgenerational
ffects of environmental chemicals comes from the classic experi-
ent by Anway et al. [184,185]. These investigators exposed male

ats to vinclozolin (an antiandrogenic fungicide) or methoxychlor
an estrogenic organochlorine insecticide) during the period of
onadal sex determination. Exposure resulted in reduced sperm
ount and viability and increased rates of infertility in adult-
ood. This loss of fertility was perpetuated through the male
ermline for four generations. Investigation of the mechanism
or the transgenerational phenotype found that endocrine disrup-
ors reprogrammed the male germline during development and
nduced heritable methylation changes that were stably transmit-
Please cite this article in press as: Perera F, Herbstman J. Prenatal environ
doi:10.1016/j.reprotox.2010.12.055

ed through the male germline [186]. Another example is perinatal
xposure to BPA shown at environmentally relevant doses of BPA
o affect the male germ line, leading to impairment in the fertility of

ale offspring over three generations [187]. A study of TCDD expo-
 PRESS
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sure has demonstrated reduced fertility and an increased incidence
of premature birth in F1 mice exposed in utero to this chemical as
well as in three subsequent generations [188].

6. Emerging evidence that nutritional, genetic and
psychosocial factors may influence DNA methylation by
environmental toxicants

Experimental animal studies have shown that the epigenetic
reprogramming by behavioral factors is reversible by nutritional
factors. For example, Weaver and colleagues showed that the
programming of the GR exon 1 promoter associated with low
grooming maternal care, as well as the resulting stress response
and behavioral phenotypes, were reversible by administration of a
methyl donor precursor or a histone deacetylase (HDAC) inhibitor
[189]. Other investigators have shown that the effects of maternal
exposure to BPA on the offspring, mediated in part by hypomethy-
lation of DNA, are prevented by maternal dietary supplementation
[28].

With respect to genetic susceptibility, as noted above, Bre-
ton and colleagues observed a significant interaction between the
GSTM null genotype of the child and the prenatal exposure to
tobacco smoke on global methylation in the child [71]. Foley et al.
[16] have reviewed other genetic factors that directly affect DNA
methylation. These include the C-to-T substitution at nucleotide
677 of the methylene tetrahydro-folate reductase (MTHFR) gene:
TT homozygous individuals have lower levels of DNA methyla-
tion than CC homozygous individuals. In addition, variants of the
DNMT gene family discussed earlier have been associated with dis-
eases including cancer [190]. As another example, a specific variant
(C > T) in the O-6-methylquanine-DNA transferase (MGMT) tumor
suppressor gene has been associated with O-6-methylguanine-
DNA methyltransferase promoter methylation and gene silencing.
Wright [191] has reviewed the evidence that psychosocial stres-
sors and physical environmental toxicants play a joint (synergistic)
role in disrupting immune and endocrine pathways involved in res-
piratory and cognitive development and function. She notes that
oxidative stress pathways that may influence health are disrupted
by both psychological stressors and environmental pollutants such
as tobacco smoke and air pollution, all of which generate reactive
oxygen species. Further, by causing dysregulatory behavioral states
such as depression and anxiety, psychosocial stressors may produce
long-lasting effects on shared physiologic processes and thereby
increase risk from pollutant exposures [192]. Wright suggests that
both factors may be acting through early life reprogramming of the
hypothalamic-pituitary-adrenal (HPA) axis and the autonomic ner-
vous system which are particularly susceptible to both stress and
physical environmental toxicants.

Examples of joint effects of the social and physical environ-
ment include the interaction between traffic-related air pollution
(NO2) and elevated social stress on risk for childhood asthma,
whereby effects were seen only in children with both exposures
[193], and the interaction between traffic related pollution and
stress on increased asthma symptoms and inflammatory markers
in adolescent asthmatics [194]. Another example of joint effects
concerns neurodevelopment and cognition of young children in
the CCCEH cohort, in which prenatal material hardship modi-
fied the response to maternal ETS exposure during pregnancy, as
evidenced by reduced scores on the Bayley Scales of mental devel-
opment at age 2 [195]. Because social and physical environmental
mental exposures, epigenetics, and disease. Reprod Toxicol (2011),

ulations, understanding of these complex interdependencies may
help explain and ultimately prevent health disparities [196]. Both
animal and human studies have also shown that environmental
enrichment can reverse the effects of early stress [196].

dx.doi.org/10.1016/j.reprotox.2010.12.055
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. Implications for prevention of childhood, adult and
ultigenerational disease: conclusions

Most of the research to date has focused on the critical role
f epigenetics in mediating the effects of social experience and
utrition [197,198]. However, there is also compelling human and
xperimental evidence that prenatal environmental exposures to
ndocrine disruptors and other environmental xenobiotics, acting
lone or in combination with genetic, nutritional, or psychoso-
ial factors, adversely affect human development and health in
hildhood and possibly over the lifecourse, and that a primary
echanism is epigenetic dysregulation. Because epigenetics pro-

ramming determines the state of expression of genes, epigenetic
ifferences could have the same consequences as genetic poly-
orphisms [197]. Moreover, there is experimental evidence that

xposures during the prenatal window can influence disease risk
ransgenerationally through epimutations in the germline. The
esearch reviewed here has potential implications for risk assess-
ent; although more data are needed on individual susceptibility

o epigenetic alterations and their persistence before this informa-
ion can be used in formal risk assessments.

Reviewers have tended to emphasize the potential reversibility
f epigenetic dysregulation and related phenotypes as encour-
gement for pharmacological and cognitive-intervention [7,199].
ften cited in this regard are studies with animal models show-

ng that supplementation with folic acid during pregnancy or
fter weaning alters the phenotype and epigenotype induced by
aternal dietary deficiency during gestation [200]. A cautionary

ote is that pharmacologic or dietary interventions would require
gene-specific approach based on a complete understanding of

he epigenetic events involved in fetal adaptation to adverse or
uboptional conditions [201]. Global epigenetic modifying agents
uch as histone deacetylase inhibitors would pose potential risks
y modifying epigenetics of multiple genes, with unpredictable
onvergences. However, the data strongly encourage preventive
olicies to reduce early life exposure to epigenetically toxic agents
s a priority in public health. Such policies could have both immedi-
te and long-term benefits for human health by preventing disease
nd developmental disorders in childhood, over the lifecourse, and
ven in future generations [202].
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